海洋生物钙的应用研究进展

  1. 摘要
  2. 引言
  3. 海洋钙的来源
  4. 来自鱼骨的钙
  5. 来自贝壳的钙
  6. 来自甲壳类的钙
  7. 来自珊瑚的钙
  8. 来自海藻的钙
  9. 钙补充剂与生物利用度
  10. 有机酸钙
  11. 钙螯合物
  12. 海洋来源钙的其他功能
    1. 生物活性
    2. 新材料
    3. 食品添加剂
  13. 结论与未来展望


摘要

钙是一种重要的矿物质,在人体健康,特别是骨骼健康中扮演着不可或缺的角色。海洋生物钙是一种丰富的资源,其结构活性复杂且被广泛接受。本文综述评估了海洋生物钙在来源、钙补充剂的应用、钙的生物利用度以及海洋钙新应用方面的研究进展。同时,也探讨了在生物医学研究、制药、保健和食品工业中融入海洋生物钙产品的未来发展潜力。本综述旨在提供有关海洋生物资源利用和产品开发的全面文献记录。

主题关键词:营养学、天然产物

引言

钙是一种重要的微量营养素,广泛被认为影响骨骼健康和人体代谢。缺钙可能引发骨质疏松、佝偻病、癫痫和贫血等问题。钙通过食物或钙补充剂进入循环系统,并在血液和骨骼钙之间保持动态平衡【1】。钙的主要来源是乳制品,包括牛奶及其副产品,如奶酪和炼乳,其次是谷物和豆腐等其他来源【2】。然而,不当的饮食可能会降低钙的生物利用度。例如,谷物中的植酸和绿叶蔬菜中的草酸可能导致钙沉淀为植酸钙和草酸钙,这些是不溶性化合物【3】。在美国的一项研究发现,仅靠食物摄取矿物质和维生素的成年人中,约有38%的人钙摄入不足,约93%的人维生素D摄入不足,而维生素D在钙吸收率、骨骼稳态和骨修复中起关键作用【4】【5】。随着年龄增长,缺钙的情况逐渐加重【6】。慢性缺钙导致骨质疏松成为一种流行病【7】。越来越多的人面临缺钙及其相关疾病【8–10】。因此,越来越多的人根据医生或媒体的建议,通过补充剂来增加钙的摄入【11】。

这些补充剂的钙来源包括碳酸钙矿石、富含钙的动物骨骼、海洋贝壳和甲壳类生物【12】。然而,天然碳酸钙矿石可能含有有害元素,如重金属【13】。动物骨骼则可能存在朊病毒传播风险【14】【15】。近年来,由于其储量丰富、安全性高和生物活性佳,来源于海洋的钙补充剂越来越受到关注【16】【17】。随着海洋资源的开发和利用,超过50%的渔业副产品(包括鱼骨、鱼鳍、鱼头和内脏)每年作为废料被丢弃,而这些均可被高效利用。海洋矿物补充剂可能增加骨骼周转率,有助于防止损伤并修复受损骨骼【18】。作为钙的重要来源,利用海洋生物钙是一种提高生物资源利用率的重要方式。本综述全面评估了海洋钙的来源、钙补充剂制备技术、海洋钙的生物活性和生物利用度,为开发利用海洋钙补充剂提供参考。

海洋钙的来源

海洋中富含生物资源,而钙是海洋生物的重要矿物成分。来源于海洋的钙主要来自鱼骨、贝类和甲壳类生物的外壳、珊瑚以及海藻(如图1所示)。

来自鱼骨的钙

鱼骨是指鱼体中的轴骨、附肢骨和鱼骨,约占鱼体总重的10–15%【19】。鱼骨组织主要由有机的细胞外基质构成,并覆盖着羟基磷灰石 [Ca₅(PO₄)₃OH]。相比其他八种鱼类,鲑科鱼类的钙含量最低,而在去脂干物质中,钙含量可高达135–147 g/kg【20】。鲨鱼软骨是另一重要钙来源。例如,胶鲨下颌软骨中的钙主要以羟基磷酸钙晶体 [Ca₁₀(PO₄)₆(OH)₂] 形式存在,其钙磷酸盐含量在干重基础上可达67%,范围介于124–258 g/kg【21】。大型鱼类的鱼骨需经化学或生物方法处理以去除有机物,或与胶原蛋白结合以提高钙的溶解度,因为羟基磷灰石形式的钙不易被人体吸收【22】。小型鱼类如凤尾鱼和鳞鳍鱼,其骨骼较柔软,可制成即食食品,连骨带肉一起食用【23】。鱼骨钙的制备通常包括先煮沸去除蛋白质和脂肪,再用碱性或有机溶剂处理或酶解,最后超微粉碎以获得鱼骨粉。

来自贝壳的钙

贝壳约占贝类总质量的60%,其碳酸钙含量可高达95%。贝壳是高品质海洋钙的重要来源。贝类养殖为人类提供了一种低环境影响的可持续蛋白质来源【24】。2016年,全球养殖贝类达到1713.9万吨,占渔业总产量的21.42%【25】。此外,由于贝壳中钙含量高于鱼骨,其钙产量更大【26】【27】。研究表明,来自大扇贝壳粉和化石贝壳粉的钙补充剂具有良好的溶解性和生物利用度【28】。贝壳钙补充剂已在多国上市,但贝壳资源的综合利用率仍然较低,亟需进一步开发和利用支持。

来自甲壳类的钙

通过食用小干虾或螃蟹即可直接摄取钙。甲壳类加工和消费会产生30–40%的海洋资源废料【29】。甲壳类主要由碳酸钙 (CaCO₃)、几丁质和蛋白质组成【30】。对虾蟹壳的研究多集中于几丁质和蛋白质资源的利用,而钙常作为副产品回收,例如制得磷酸氢钙、乳酸钙等形式的钙盐【31】。

来自珊瑚的钙

珊瑚钙来源于多种生物的外骨骼。珊瑚钙是一种天然海洋钙来源,含钙约24%、镁12%,以及70多种矿物质。近年来,珊瑚钙作为补钙新趋势,常用于治疗骨代谢紊乱、骨质疏松及其他骨骼疾病【33】【34】。

来自海藻的钙

海藻,尤其是红藻和绿藻,富含多种矿物质,包括钙【35】。例如,Aquamin是一种来自红藻Lithothamnion钙化骨骼遗骸的富钙补充剂,其钙含量高达31%【36】。研究表明,与碳酸钙补充剂相比,海藻钙在马匹中的钙吸收效果更佳【37】;此外,从海藻提取的钙在骨骼钙化方面具有促进作用,尤其在骨质疏松动物模型中表现突出【38】。由牡蛎壳粉和海藻制备的藻钙,其生物利用度高于碳酸钙【39】。

钙补充剂与生物利用度

直接摄取海洋来源的钙
最常见的直接钙补充剂包括小干虾、贝壳粉和小型鱼类。若干海洋钙补充剂(如牡蛎壳和珊瑚钙)已在多国商业化。然而,这些补充剂的主要成分是碳酸钙和多羟基磷酸钙,难以被人体吸收且易增加胃部负担【40】。为提高钙吸收率,通常需先将海洋来源粉末化,或进行真空加热处理【41】【42】。

研究发现,与碳酸钙补充剂或其他富钙食品相比,海洋来源的钙具有一定优势。例如,Aquamin的生物利用度更高,在减缓骨质流失方面优于碳酸钙【36】;鱼骨粉(Phoscalim)和鳐鱼软骨水解物(Glycollagene)在短期钙吸收和骨吸收方面可与牛奶相媲美【16】;用鳕鱼骨制成的钙片足以作为日常补钙剂并能预防骨质疏松【43】。

目前,国际推荐一般人群每日钙摄入量为700–1200 mg;青少年(9–18岁)需约1300 mg钙,而低钙饮食的孕妇则需1500–2000 mg钙【44】【45】。研究显示,缺钙人群中超50%为70岁以上男女、51–70岁女性、9–13岁儿童及14–18岁女孩【46】。有意识地补充海洋钙对预防缺钙十分有效,但仅依赖海洋食材直接摄取钙不足以治疗缺钙相关疾病,治疗时仍需选用更高剂量的钙补充剂或药物【5】。

有机酸钙

有机酸钙(如柠檬酸钙、乳酸钙、葡萄糖酸钙、醋酸钙、甲酸钙和丙酸钙)具有更高的生物利用度、溶解性和吸收率,且不受胃内容物pH影响,敏感性低于碳酸钙【11】【40】【47】。有机酸钙主要通过中和反应或发酵制备(见图2)。作为膳食钙补充剂,甲酸钙被发现比碳酸钙和柠檬酸钙具有显著优势【48】;葡萄糖酸钙则因相对生物利用度高且耐受性好而广泛使用【49】。

然而,葡萄糖酸钙和乳酸钙的钙含量较低,作为口服补充剂不够实用;醋酸钙和丙酸钙也应用有限【50】。单一使用有机酸钙吸收效果并不理想,因其可能与食物中的草酸或植酸结合。将钙与两种或更多有机酸结合(如柠檬酸苹果酸钙,CCM【10】),或与胶原蛋白肽结合的柠檬酸钙【51】【52】,均可改善吸收效果。此外,多糖(Polycan)与乳酸–葡萄糖酸钙联合使用,相较单一有机酸钙具有协同增效作用【53】【54】。

海洋来源的有机酸钙主要包括鱼骨、虾壳、蟹壳和其他贝壳【3】。为了促进钙的吸收,应根据营养成分和相关加工特性选择合适的处理方法,如焙烧、酶解和发酵方法【55】【56】。随后,加入柠檬酸、葡萄糖酸、乳酸、醋酸和/或丙酸以制备有机酸钙。经减压处理后,贝类钙与柠檬酸和乳酸结合的钙的溶解性和生物利用度得到了提高【26】。鱼骨可与乳酸乳球菌(Leuconostoc mesenteroides)发酵以获得高含量的可溶性钙,包括游离钙、钙-氨基酸螯合物、醋酸钙、小肽钙和乳酸钙。草鱼骨的发酵不仅能提高钙的生物利用度,还能避免鱼骨钙与水产蛋白的浪费【57】。

钙螯合物

钙螯合物是指氨基酸或肽与钙离子之间形成稳定配位键的金属复合物,主要包括两大类:钙-氨基酸螯合物和钙-肽螯合物【58–60】。其制备通常通过多肽或寡肽与钙离子螯合,或单一/复合氨基酸与钙离子螯合(见图3)。氨基酸螯合钙不依赖于维生素D₃,可通过氨基酸代谢途径被机体吸收。例如,赖氨酸钙是一种新型钙制剂,吸收效果优于碳酸钙和柠檬酸苹果酸钙(CCM),是一种更佳的钙补充剂选择【61】。

相比之下,肽螯合钙具有更多优势【62–64】。越来越多研究发现,特定螯合肽能促进和改善矿物质的生物利用度【65】【66】。通过酶解将鱼骨钙与具钙结合能力的骨胶原肽结合制备的钙-肽螯合物,表现出显著的生物利用度提升【67–69】。基于藻类肽的钙螯合复合物及海藻酸钙纳米颗粒,被认为具有作为高效钙补充剂以改善骨骼健康的潜力【70–72】。

然而,肽螯合钙的生产成本较高、产量有限。随着新型制备技术的发展,肽螯合钙有望成为优良的钙补充剂。

海洋来源钙的其他功能

生物活性

海洋生物钙除了改善钙的稳态和骨骼健康外,还具有其他生物功能。例如,研究表明珊瑚钙能调节血压并预防结肠癌转移【30】【73】【74】。来自螺旋藻(Spirulina platensis,一种蓝绿藻)中的螺旋藻钙螯合物被证明能有效抑制单纯疱疹病毒1型(HSV-1),并可能对其他疱疹病毒感染具有抑制作用【75】。珊瑚钙氢氧化物具有抗氧化作用,在小鼠中可延缓衰老并预防肝脏脂肪变性【76–78】。来自扇贝壳的氧化钙能抑制铜绿假单胞菌(Pseudomonas aeruginosa),该菌是引起鸡蛋腐败的致病菌,并且对消毒剂和清洁剂等化学试剂具有很强的耐受性【79】。来自牡蛎的钙在抑制口腔鳞状细胞癌的形成和增殖方面表现出良好效果【80】。

新材料

来自海洋的钙可以作为高附加值化合物的原料,应用于生物医学研究、制药、保健和食品工业【81】。研究表明,牡蛎壳、蛤蜊壳、乌贼骨和鲑鱼骨具有生产多孔支架的巨大潜力【82–85】。这些支架的结构特性有助于改善生物活性,包括力学性能、骨组织生长和血管化【86】。从鲑鱼骨和虹鳟骨中提取的天然羟基磷灰石(nHAP)在骨组织工程中作为骨植入材料替代品展现了巨大潜力【87】。海洋生物钙还可用于制备吸附材料,在水处理方面表现出广泛应用潜力。例如,由蟹壳制成的富钙生物炭可用于去除废水中的染料和磷【88】【89】;由牡蛎壳合成的不溶性硅酸钙水合物可用于去除有机污染物和重金属离子【90】。从大西洋鳕鱼骨中提取的单相羟基磷灰石(HA)和双相磷酸钙(HA/β-TCP)无已知细胞毒性,在模拟体液中显示出良好生物活性【91】。因此,从海洋生物提取的磷酸钙在制备抗菌骨替代材料或修复骨缺损方面具有良好前景。从鳕鱼骨中提取的羟基磷灰石(Ca₁₀(PO₄)₆(OH)₂, HAp)作为一种磷酸钙,是防晒配方中更安全的选择,显示其在保健品和化妆品中的广泛应用潜力【92】。

食品添加剂

来自海洋加工废料的生物钙仍可用于食品加工。例如,鱼骨可添加到鱼糜中以改善产品的凝胶性能【93】;牡蛎壳钙粉可提高重组火腿的咀嚼性和弹性【94】;富含钙的虾壳和蟹壳也可用于制备食品絮凝剂【95】。许多食品添加剂含钙,如碳酸钙、硅酸钙、硫酸钙和乳酸钙。海洋生物来源的钙添加剂因其天然来源可能更安全。

结论与未来展望

海洋加工废料通常被视为无用,但它是一种丰富且低成本的钙来源。一项研究发现,55 种钙补充剂品牌可根据其主要成分分为七类,其中三类或更多来自海洋生物,主要包括牡蛎/蛤蜊壳、海藻、鲨鱼软骨和螯合钙产品(表 1)【10】。此外,来自海洋生物的钙具有良好的生物利用度和生物功能。重新利用海洋生物副产品不仅可以增加钙的附加值,还能减少环境污染风险。

在钙补充剂的开发中,未来工作应聚焦于海洋生物中蛋白质、胶原蛋白、几丁质、钙及其他营养成分的综合利用,以及利用特定活性成分来提高钙的生物利用度。在其他应用方面,研究可能需要关注将海洋钙转化为健康食品、新材料或食品添加剂的工艺,并将其扩展到商业化规模。

本文翻译自论文 Xu, Y., Ye, J., Zhou, D., & Su, L. (2020). Research progress on applications of calcium derived from marine organisms. Scientific Reports, 10, 18425.

参考文献:

  1. Shojaeian Z, Sadeghi R, Latifnejad RR. Calcium and vitamin D supplementation effects on metabolic factors, menstrual cycles and follicular responses in women with polycystic ocvary syndrome: A systematic review and meta-analysis. Caspian J. Intern. Med. 2019;10:359–369. doi: 10.22088/cjim.10.4.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ong AM, Kang K, Weiler HA, Morin SN. Fermented milk products and bone health in postmenopausal women: A systematic review of randomized controlled trials, prospective cohorts, and case–control studies. Adv. Nutr. 2020;11:251–265. doi: 10.1093/advances/nmz108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kim SK, Ravichandran YD, Kong CS. Applications of calcium and its supplement derived from marine organisms. Crit. Rev. Food Sci. 2012;52:469–474. doi: 10.1080/10408391003753910. [DOI] [PubMed] [Google Scholar]
  4. Blumberg JB, Frei BB, Fulgoni VL, Weaver CM, Zeisel SH. Impact of frequency of multi-vitamin/multi-mineral supplement intake on nutritional adequacy and nutrient deficiencies in US adults. Nutrients. 2017;9:849. doi: 10.3390/nu9080849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fischer V, Haffner-Luntzer M, Amling M, Ignatius A. Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. Eur. Cells Mater. 2018;35:365–385. doi: 10.22203/eCM.v035a25. [DOI] [PubMed] [Google Scholar]
  6. Lee YK, et al. Low calcium and vitamin D intake in Korean women over 50 years of age. J. Bone Miner. Metab. 2017;35:522–528. doi: 10.1007/s00774-016-0782-7. [DOI] [PubMed] [Google Scholar]
  7. Weaver CM, Bischoff-Ferrari HA, Shanahan CJ. Cost-benefit analysis of calcium and vitamin D supplements. Arch. Osteoporos. 2019;14:50. doi: 10.1007/s11657-019-0589-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wilson RL, et al. Reduced dietary calcium and vitamin D results in preterm birth and altered placental morphogenesis in mice during pregnancy. Reprod. Sci. 2020;27:1330–1339. doi: 10.1007/s43032-019-00116-2. [DOI] [PubMed] [Google Scholar]
  9. Kim OH, et al. High-phytate/low-calcium diet is a risk factor for crystal nephropathies, renal phosphate wasting, and bone loss. ELife. 2020;9:e52709. doi: 10.7554/eLife.52709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarosz M, Rychlik E. P-184-calcium and vitamin D intake and colorectal cancer morbidity rates in Poland. Ann. Oncol. 2019;30:v50. doi: 10.1093/annonc/mdz155.183. [DOI] [Google Scholar]
  11. Reid IR, Bristow SM, Bolland MJ. Calcium supplements: Benefits and risks. J. Intern. Med. 2015;278:354–368. doi: 10.1111/joim.12394. [DOI] [PubMed] [Google Scholar]
  12. Kim M. Mercury, cadmium and arsenic contents of calcium dietary supplements. Food Addit. Contam. 2004;21:763–767. doi: 10.1080/02652030410001713861. [DOI] [PubMed] [Google Scholar]
  13. Ross EA, Szabo NJ, Tebbett IR. Lead content of calcium supplements. JAMA. 2000;284:1425–1429. doi: 10.1001/jama.284.11.1425. [DOI] [PubMed] [Google Scholar]
  14. Kim Y, Rodriguez AE, Nowzari H. The risk of prion infection through bovine grafting materials. Clin. Implant. Dent. R. 2016;18:1095–1102. doi: 10.1111/cid.12391. [DOI] [PubMed] [Google Scholar]
  15. Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: A systematic review. Clin. Implant. Dent. R. 2013;15:645–653. doi: 10.1111/j.1708-8208.2011.00407.x. [DOI] [PubMed] [Google Scholar]
  16. Lecerf JM, et al. Effects of two marine dietary supplements with high calcium content on calcium metabolism and biochemical marker of bone resorption. Eur. J. Clin. Nutr. 2008;62:879–884. doi: 10.1038/sj.ejcn.1602797. [DOI] [PubMed] [Google Scholar]
  17. Flammini L, et al. Hake fish bone as a calcium source for efficient bone mineralization. Int. J. Food Sci. Nutr. 2016;67:265–273. doi: 10.3109/09637486.2016.1150434. [DOI] [PubMed] [Google Scholar]
  18. Nielsen BD, Cate RE, O Connor-Robison CI. A marine mineral supplement alters markers of bone metabolism in yearling arabians. J. Equine Vet. Sci. 2010;30:419–424. doi: 10.1016/j.jevs.2010.07.003. [DOI] [Google Scholar]
  19. Pateiro M, et al. Nutritional profiling and the value of processing by-products from gilthead sea bream (Sparus Aurata). Mar. Drugs. 2020;18:101. doi: 10.3390/md18020101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Toppe J, Albrektsen S, Hope B, Aksnes A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007;146:395–401. doi: 10.1016/j.cbpb.2006.11.020. [DOI] [PubMed] [Google Scholar]
  21. Patwardhan UN, Pahuja DN, Samuel AM. Calcium bioavailability: An in vivo assessment. Nutr. Res. 2001;21:667–675. doi: 10.1016/S0271-5317(01)00278-0. [DOI] [Google Scholar]
  22. Edmonds JS, Shibata Y, Lenanton RCJ, Caputi N, Morita M. Elemental composition of jaw cartilage of gummy shark Mustelus antarcticus Günther. Sci. Total Environ. 1996;192:151–161. doi: 10.1016/S0048-9697(96)05311-9. [DOI] [Google Scholar]
  23. Chakraborty P, Sahoo S, Bhattacharyya DK, Ghosh M. Marine lizardfish (Harpadon nehereus) meal concentrate in preparation of ready-to-eat protein and calcium rich extruded snacks. J. Food Sci. Technol. 2020;57:338–349. doi: 10.1007/s13197-019-04066-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stewart-Sinclair PJ, Last KS, Payne BL, Wilding TA. A global assessment of the vulnerability of shellfish aquaculture to climate change and ocean acidification. Ecol. Evol. 2020;10:3518–3534. doi: 10.1002/ece3.6149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. FAO. The State of World Fisheries and Aquaculture 2018. Rome: FAO; 2018. [Google Scholar]
  26. Petenuci ME, et al. Fatty acid concentration, proximate composition, and mineral composition in fishbone flour of Nile Tilapia. Arch. Latinoam. Nutr. 2008;58:87–90. [PubMed] [Google Scholar]
  27. Fujita T, Fukase M, Miyamoto H, Matsumoto T, Ohue T. Increase of bone mineral density by calcium supplement with oyster shell electrolysate. Bone Miner. 1990;11:85–91. doi: 10.1016/0169-6009(90)90017-A. [DOI] [PubMed] [Google Scholar]
  28. Miura T, Takayama Y, Nakano M. Effect of shellfish calcium on the apparent absorption of calcium and bone metabolism in ovariectomized rats. Biosci. Biotech. Bioch. 1999;63:40–45. doi: 10.1271/bbb.63.40. [DOI] [PubMed] [Google Scholar]
  29. Kandra P, Challa MM, Jyothi HK. Efficient use of shrimp waste: Present and future trends. Appl. Microbiol. Biot. 2012;93:17–29. doi: 10.1007/s00253-011-3651-2. [DOI] [PubMed] [Google Scholar]
  30. Gbenebor OP, Adeosun SO, Lawal GI, Jun S. Role of CaCO₃ in the physicochemical properties of crustacean-sourced structural polysaccharides. Mater. Chem. Phys. 2016;184:203–209. doi: 10.1016/j.matchemphys.2016.09.043. [DOI] [Google Scholar]
  31. Ding H, Lv L, Wang Z, Liu L. Study on the “glutamic acid-enzymolysis” process for extracting chitin from crab shell waste and its by-product recovery. Appl. Biochem. Biotech. 2020;190:1074–1091. doi: 10.1007/s12010-019-03139-2. [DOI] [PubMed] [Google Scholar]
  32. Laine J, Labady M, Albornoz A, Yunes S. Porosities and pore sizes in coralline calcium carbonate. Mater. Charact. 2008;59:1522–1525. doi: 10.1016/j.matchar.2007.12.002. [DOI] [Google Scholar]
  33. Reddy PN, Lakshmana M, Udupa UV. Effect of Praval bhasma (Coral Calx), a natural source of rich calcium on bone mineralization in rats. Pharmacol. Res. 2003;48:593–599. doi: 10.1016/S1043-6618(03)00224-X. [DOI] [PubMed] [Google Scholar]
  34. Banu J, et al. Dietary coral calcium and zeolite protects bone in a mouse model for postmenopausal bone loss. Nutr. Res. 2012;32:965–975. doi: 10.1016/j.nutres.2012.09.009. [DOI] [PubMed] [Google Scholar]
  35. Marsham S, Scott GW, Tobin ML. Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem. 2007;100:1331–1336. doi: 10.1016/j.foodchem.2005.11.029. [DOI] [Google Scholar]
  36. Brennan O, et al. A natural, calcium-rich marine multi-mineral complex preserves bone structure, composition and strength in an ovariectomised rat model of osteoporosis. Calcified Tissue Int. 2017;101:445–455. doi: 10.1007/s00223-017-0299-7. [DOI] [PubMed] [Google Scholar]
  37. Jacobs R, Gordon M, Jerina M. Feeding a seaweed-derived calcium source versus calcium carbonate on physiological parameters of horses. J. Equine Vet. Sci. 2019;76:83. doi: 10.1016/j.jevs.2019.03.108. [DOI] [Google Scholar]
  38. Yamaguchi M, Hachiya S, Hiratuka S, Suzuki T. Effect of marine algae extract on bone calcification in the femoral-metaphyseal tissues of rats: Anabolic effect of sargassum horneri. J. Health Sci. 2001;47:533–538. doi: 10.1248/jhs.47.533. [DOI] [Google Scholar]
  39. Uenishi K, et al. Fractional absorption of active absorbable algal calcium (AAACA) and calcium carbonate measured by a dual stable-isotope method. Nutrients. 2010;2:752–761. doi: 10.3390/nu2070752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Li K, et al. The good, the bad, and the ugly of calcium supplementation: A review of calcium intake on human health. Clin. Interv. Aging. 2018;13:2443–2452. doi: 10.2147/CIA.S157523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Fujita T, Ohue T, Fujii Y, Miyauchi A, Takagi Y. Heated oyster shell–seaweed calcium (AAACA) on osteoporosis. Calcif. Tissue Int. 1996;58:226–230. doi: 10.1007/BF02508640. [DOI] [PubMed] [Google Scholar]
  42. Tsugawa N, et al. Bioavailability of calcium from calcium carbonate, dl-calcium lactate, l-calcium lactate and powdered oyster shell calcium in vitamin d-deficient or –replete rats. Biol. Pharm. Bull. 1995;18:677–682. doi: 10.1248/bpb.18.677. [DOI] [PubMed] [Google Scholar]
  43. Huo J, Deng S, Xie C, Tong G. Preparation and biological efficacy of haddock bone calcium tablets. Chin. J. Oceanol. Limn. 2010;28:371–378. doi: 10.1007/s00343-010-9019-0. [DOI] [Google Scholar]
  44. Vavrusova M, Skibsted LH. Calcium nutrition. Bioavailability and fortification. LWT Food Sci. Technol. 2014;59:1198–1204. doi: 10.1016/j.lwt.2014.04.034. [DOI] [Google Scholar]
  45. Capozzi A, Scambia G, Lello S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas. 2020;140:55–63. doi: 10.1016/j.maturitas.2020.05.020. [DOI] [PubMed] [Google Scholar]
  46. Bailey RL, Picciano MF, et al. Estimation of total usual calcium and vitamin D intakes in the United States. J. Nutr. 2010;140:817–822. doi: 10.3945/jn.109.118539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Palermo A, et al. Calcium citrate: From biochemistry and physiology to clinical applications. Rev. Endocr. Metab. Dis. 2019;20:353–364. doi: 10.1007/s11154-019-09520-0. [DOI] [PubMed] [Google Scholar]
  48. Hanzlik RP, Fowler SC, Fisher DH. Relative bioavailability of calcium from calcium formate, calcium citrate, and calcium carbonate. J. Pharmacol. Exp. Ther. 2005;313:1217–1222. doi: 10.1124/jpet.104.081893. [DOI] [PubMed] [Google Scholar]
  49. Wiria M, et al. Relative bioavailability and pharmacokinetic comparison of calcium glucoheptonate with calcium carbonate. Pharmacol. Res. Perspect. 2020;8:e589. doi: 10.1002/prp2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Straub DA. Calcium supplementation in clinical practice: A review of forms, doses, and indications. Nutr. Clin. Pract. 2007;22:286–296. doi: 10.1177/0115426507022003286. [DOI] [PubMed] [Google Scholar]
  51. Liu J, Wang J, Guo Y. Effect of collagen peptide, alone and in combination with calcium citrate, on bone loss in tail-suspended rats. Molecules. 2020;25:782. doi: 10.3390/molecules25040782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Liu J, et al. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats. PLoS One. 2015;10:e135019. doi: 10.1371/journal.pone.0135019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Choi JS, et al. Effect of polycalcium, a mixture of polycan and calcium lactate–gluconate in a 1:9 weight ratio, on rats with surgery-induced osteoarthritis. Exp. Ther. Med. 2015;9:1780–1790. doi: 10.3892/etm.2015.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Choi JS, et al. Antiosteoporotic effects of polycan in combination with calcium lactate–gluconate in ovariectomized rats. Exp. Ther. Med. 2014;8:957–967. doi: 10.3892/etm.2014.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wang X, et al. Preparation of cucumber seed peptide–calcium chelate by liquid state fermentation and its characterization. Food Chem. 2017;229:487–494. doi: 10.1016/j.foodchem.2017.02.121. [DOI] [PubMed] [Google Scholar]
  56. Bajaj M, Freiberg A, Winter J, Xu Y, Gallert C. Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Appl. Microbiol. Biot. 2015;99:9835–9846. doi: 10.1007/s00253-015-6841-5. [DOI] [PubMed] [Google Scholar]
  57. Tang S, et al. Preparation of a fermentation solution of grass fish bones and its calcium bioavailability in rats. Food Funct. 2018;9:4135–4142. doi: 10.1039/C8FO00674A. [DOI] [PubMed] [Google Scholar]
  58. Wang L, et al. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chem. 2018;239:416–426. doi: 10.1016/j.foodchem.2017.06.090. [DOI] [PubMed] [Google Scholar]
  59. Wu W, et al. Preparation process optimization of pig bone collagen peptide–calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem. 2019;284:80–89. doi: 10.1016/j.foodchem.2019.01.103. [DOI] [PubMed] [Google Scholar]
  60. Zhao L, et al. Isolation and identification of a whey protein–sourced calcium-binding tripeptide Tyr-Asp-Thr. Int. Dairy J. 2015;40:16–23. doi: 10.1016/j.idairyj.2014.08.013. [DOI] [Google Scholar]
  61. Shankar KMS, Raizada P, Jain R. A randomized open-label clinical study comparing the efficacy, safety, and bioavailability of calcium lysinate with calcium carbonate and calcium citrate malate in osteopenia patients. J. Orthop. Case Rep. 2018;8:15–19. doi: 10.13107/jocr.2250-0685.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Guo L, et al. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Tech. 2014;37:92–105. doi: 10.1016/j.tifs.2014.02.007. [DOI] [Google Scholar]
  63. Liu FR, Wang L, Wang R, Chen ZX. Calcium-binding capacity of wheat germ protein hydrolysate and characterization of peptide–calcium complex. J. Agric. Food Chem. 2013;61:7537–7544. doi: 10.1021/jf401868z. [DOI] [PubMed] [Google Scholar]
  64. Zhao L, Huang S, Cai X, Hong J, Wang S. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. J. Funct. Foods. 2014;10:46–53. doi: 10.1016/j.jff.2014.05.013. [DOI] [Google Scholar]
  65. Hou H, et al. A novel calcium-binding peptide from antarctic krill protein hydrolysates and identification of binding sites of calcium–peptide complex. Food Chem. 2018;243:389–395. doi: 10.1016/j.foodchem.2017.09.152. [DOI] [PubMed] [Google Scholar]
  66. Sun N, Jin Z, Li D, Yin H, Lin S. An exploration of the calcium-binding mode of egg white peptide, Asp-His-Thr-Lys-Glu, and in vitro calcium absorption studies of peptide–calcium complex. J. Agric. Food Chem. 2017;65:9782–9789. doi: 10.1021/acs.jafc.7b03705. [DOI] [PubMed] [Google Scholar]
  67. Kim SK, Jung WK. Beneficial effect of teleost fish bone peptide as calcium supplements for bone mineralization. Adv. Food Nutr. Res. 2012;65:287–295. doi: 10.1016/B978-0-12-416003-3.00019-6. [DOI] [PubMed] [Google Scholar]
  68. Peng Z, Hou H, Zhang K, Li B. Effect of calcium-binding peptide from pacific cod (Gadus Macrocephalus) bone on calcium bioavailability in rats. Food Chem. 2017;221:373–378. doi: 10.1016/j.foodchem.2016.10.078. [DOI] [PubMed] [Google Scholar]
  69. Jung WK, Lee BJ, Kim SK. Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. Br. J. Nutr. 2006;95:124–128. doi: 10.1079/BJN20051615. [DOI] [PubMed] [Google Scholar]
  70. Lin J, Cai X, Tang M, Wang S. Preparation and evaluation of the chelating nanocomposite fabricated with marine algae Schizochytrium sp. protein hydrolysate and calcium. J. Agric. Food Chem. 2015;63:9704–9714. doi: 10.1021/acs.jafc.5b04001. [DOI] [PubMed] [Google Scholar]
  71. Guo H, Hong Z, Yi R. Core-shell collagen peptide chelated calcium/calcium alginate nanoparticles from fish scales for calcium supplementation. J. Food Sci. 2015;80:N1595–N1601. doi: 10.1111/1750-3841.12912. [DOI] [PubMed] [Google Scholar]
  72. Bae YJ, et al. Magnesium supplementation through seaweed calcium extract rather than synthetic magnesium oxide improves femur bone mineral density and strength in ovariectomised rats. Biol. Trace Elem. Res. 2011;144:992–1002. doi: 10.1007/s12011-011-9073-2. [DOI] [PubMed] [Google Scholar]
  73. Hirota Y, Sugisaki T. Effects of the coral calcium as an inhibitory substance against colon cancer and its metastasis in the lungs. Nutr. Res. 2000;20:1557–1567. doi: 10.1016/S0271-5317(00)00240-2. [DOI] [Google Scholar]
  74. Ripamonti U, Crooks J, Khoali L, Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials. 2009;30:1428–1439. doi: 10.1016/j.biomaterials.2008.10.065. [DOI] [PubMed] [Google Scholar]
  75. Mader J, et al. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J. Allergy Clin. Immunol. 2016;137:197–203. doi: 10.1016/j.jaci.2015.07.027. [DOI] [PubMed] [Google Scholar]
  76. Hou C, et al. Coral calcium hydride prevents hepatic steatosis in high fat diet-induced obese rats: A potent mitochondrial nutrient and phase II enzyme inducer. Biochem. Pharmacol. 2016;103:85–97. doi: 10.1016/j.bcp.2015.12.020. [DOI] [PubMed] [Google Scholar]
  77. Ueda Y, Kojima T, Oikawa T. Hippocampal gene network analysis suggests that coral calcium hydride may reduce accelerated senescence in mice. Nutr. Res. 2011;31:863–872. doi: 10.1016/j.nutres.2011.09.011. [DOI] [PubMed] [Google Scholar]
  78. Ueda Y, Nakajima A, Oikawa T. Hydrogen-related enhancement of in vivo antioxidant ability in the brain of rats fed coral calcium hydride. Neurochem. Res. 2010;35:1510–1515. doi: 10.1007/s11064-010-0204-5. [DOI] [PubMed] [Google Scholar**
  79. Jung SJ, et al. Bactericidal effect of calcium oxide (scallop-shell powder) against Pseudomonas aeruginosa biofilm on quail egg shell, stainless steel, plastic, and rubber. J. Food Sci. 2017;82:1682–1687. doi: 10.1111/1750-3841.13753. [DOI] [PubMed] [Google Scholar**
  80. Chen Y, et al. Inhibition of 4NQO-induced oral carcinogenesis by dietary oyster shell calcium. Integr. Cancer. Ther. 2016;15:96–101. doi: 10.1177/1534735415596572. [DOI] [PMC free article] [PubMed] [Google Scholar**
  81. Terzioglu P, Ogut H, Kalemtas A. Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;91:899–911. doi: 10.1016/j.msec.2018.06.010. [DOI] [PubMed] [Google Scholar**
  82. Shen Y, et al. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration. ACS Appl. Mater. Interfaces. 2014;6:12177–12188. doi: 10.1021/am501448t. [DOI] [PubMed] [Google Scholar**
  83. Naga SM, El-Maghraby HF, Mahmoud EM, Talaat MS, Ibrhim AM. Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. Ceram. Int. 2015;41:15010–15016. doi: 10.1016/j.ceramint.2015.08.057. [DOI] [PubMed] [Google Scholar**
  84. Rocha JHG, et al. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–857. doi: 10.1016/j.bone.2005.06.018. [DOI] [PubMed] [Google Scholar**
  85. Bramhe S, Kim TN, Balakrishnan A, Chu MC. Conversion from biowaste venerupis clam shells to hydroxyapatite nanowires. Mater. Lett. 2014;135:195–198. doi: 10.1016/j.matlet.2014.07.137. [DOI] [Google Scholar**
  86. Brennan O, Stenson B, Widaa A, O Gorman DM, O Brien FJ. Incorporation of the natural marine multi-mineral dietary supplement aquamin enhances osteogenesis and improves the mechanical properties of a collagen-based bone graft substitute. J. Mech. Behav. Biomed. Mater. 2015;47:114–123. doi: 10.1016/j.jmbbm.2015.03.015. [DOI] [PubMed] [Google Scholar**
  87. Shi P, et al. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;90:706–712. doi: 10.1016/j.msec.2018.04.026. [DOI] [PubMed] [Google Scholar**
  88. Dai L, et al. Calcium-rich biochar from crab shell: An unexpected super adsorbent for dye removal. Bioresour. Technol. 2018;267:510–516. doi: 10.1016/j.biortech.2018.07.090. [DOI] [PubMed] [Google Scholar**
  89. Dai L, et al. Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. J. Environ. Manag. 2017;198:70–74. doi: 10.1016/j.jenvman.2017.04.057. [DOI] [PubMed] [Google Scholar**
  90. You W, et al. Functionalized calcium silicate nanofibers with hierarchical structure derived from oyster shells and their application in heavy metal ions removal. Phys. Chem. Chem. Phys. 2016;18:15564–15573. doi: 10.1039/C6CP01199C. [DOI] [PubMed] [Google Scholar**
  91. Piccirillo C, et al. Hydroxyapatite-based materials of marine origin: A bioactivity and sintering study. Mater. Sci. Eng. C. 2015;51:309–315. doi: 10.1016/j.msec.2015.03.020. [DOI] [PubMed] [Google Scholar**
  92. Teixeira CMA, et al. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe₂O₃ sunscreen. Mater. Sci. Eng. C. 2017;71:141–149. doi: 10.1016/j.msec.2016.09.065. [DOI] [PubMed] [Google Scholar**
  93. Zhu Z, Lanier T, Farkas B, Li B. Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock (Theragra chalcogramma) surimi. J. Food Eng. 2014;131:154–160. doi: 10.1016/j.jfoodeng.2014.01.022. [DOI] [Google Scholar**
  94. Choi JS, Lee HJ, Jin SK, Lee HJ, Choi YI. Effect of oyster shell calcium powder on the quality of restructured pork ham. Korean J. Food Sci. Technol. 2014;34:372–377. doi: 10.5851/kosfa.2014.34.3.372. [DOI] [PMC free article] [PubMed] [Google Scholar**
  95. Jun JY, et al. Effects of crab shell extract as a coagulant on the textural and sensorial properties of tofu (soybean curd). Food Sci. Nutr. 2019;7:547–553. doi: 10.1002/fsn3.837. [DOI] [PMC free article] [PubMed] [Google Scholar**

留下评论